The Synthesis of Azoniadithia[6]helicenes

Kiyoshi Sato*a, Shuichi Okazakia, Takamichi Yamagishia, and Sadao Araib

^aDepartment of Applied Chemistry, Graduate School of Engineering, Tokyo Metropolitan University, 1-1

Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan

^bDepartment of Chemistry, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan

Received January 27, 2004

A new short-step synthesis of 8a-azonia[6]helicene (1) and the novel dithieno derivatives (2 and 3) is described. Double photocyclization of 2,8-distyrylquinolizinium salt (8) gave 1 in 35% yield. Similarly, 2,8-bis[2-(2-thienyl)vinyl]- and 2,8-bis[2-(3-thienyl)vinyl]-quinolizinium salts (9 and 10) afforded new azonia-[6]helicenes containing two thiophene rings at the ends of helix, that is 7a-azonia-3,12-dithia[6]helicene (2) and 7a-azonia-1,14-dithia[6]helicene (3), in 43 and 35% yields, respectively. The total assignment of their ¹H- and ¹³C-nmr spectra was performed by utilizing two-dimensional and NOE nmr spectroscopic methods.

J. Heterocyclic Chem., 41, 443 (2004).

Introduction.

Helicences and heterohelicenes have received currently much interest because of their unique properties derived from the inherently helical structure for optoelectronic applications [1], and also attracted considerable attention in the field of self-assembly into helical aggregates [2].

There are a number of studies on synthesis and properties of heterohelicenes that contain thiophene rings [3] or other heterocycles [4,5]. The heterohelicenes are expected to have interesting properties, *e.g.* intra- and/or intermolecular charge transfer by through-bond and/or throughspace interactions between π -electron systems of overlapping aromatic rings. Recently, we have reported the crystal structure of racemic 8a-azonia[6]helicene hexafluorophosphate (1•PF₆⁻) containing quinolizinium ion [6]. The X-ray analysis revealed that the cationic heterohelicene 1 formed a well-defined homochiral columnar structure by an intermolecular face-to-face type π - π interaction with an attractive electronic interaction between the central π -accepting quinolizinium moiety and the terminal π -donative benzene rings of adjacent molecules.

These studies prompt us to synthesize heterohelicene comprising of two different heterocycles [7,8]. Previously, we have reported the first example for azonia derivatives of thia[5]helicenes [9], which include π -excessive thiophene rings and a π -deficient quinolizinium ring in one [5]helicene framework.

In this paper we describe the synthesis of two hitherto unknown hetero[6]helicenes, 7a-azonia-3,12-dithia[6]helicene (2) and 7a-azonia-1,14-dithia[6]helicene (3),

which are isoelectronic with 8a-azonia[6]helicene (1) but contain two thiophene rings at the ends of helix.

Results and Discussion.

We have already succeeded in the first synthesis of 8aazonia[6]helicene (1) by the photocyclization of 2-styrylnaphtho[1,2-a]quinolizinium [5a]. In order to synthesize the desired C_2 symmetric azoniadithia[6]helicenes (2 and 3), we devised a new synthetic strategy by using double photocyclization of 2,8-distyrylquinolizinium derivatives. In this new pathway, 2,8-dimethylquinolizinium cation (7) is a key intermediate, because the two methyl groups located at the *para* positions relative to the quaternary nitrogen atom of the quinolizinium cation would be react with arylcarbaldehydes to form arylvinylquinolizinium derivatives [10]. The synthesis of 2-methylquinolizinium from 2-picolyllithium has been reported [11]. To adapt this method for the preparation of 2,8-dimethylquinolizinium (7), however, it requires a selective lithiation of two reactive methyl groups of 2,4-lutidine: the 2-methyl group should be selectively lithiated in the presence of the 4-methyl group. Although several methods for the selective methylmetallation of 2,4-lutidine have been reported [12], we have discovered a simple solvent controlled selective methyllithiation method of 2,4-lutidine.

Treatment of 2,4-lutidine with phenyllithium in THF caused exclusive metallation of the 4-methyl group, which was identified by reaction with 4,4-dimethoxybutan-2-one (5) to form the corresponding alcohol 6a, whose nmr spectrum indicated that one signal (at higher field, which was assigned to 4-position) of the two methyl groups of 2,4-lutidine moiety disappeared. In contrast, 2,4-lutidine reacted with phenyllithium in dry ether to give lithium derivatives at the 2 position, which was confirmed from the formation of hydroxy-acetal **6b** as a single adduct. In ¹H nmr spectrum of the product, the other methyl group (assigned to 2-position) of 2,4-lutidine moiety disappeared. No evidence of the reaction at the 4 position could be obtained under the above metallation conditions. The structure of the hydroxy-acetal 6b was also identified by the subsequent acid-catalyzed dehydrative cyclization. The cyclization

product showed simple and highly symmetrical nmr spectrum, which is fully consistent with the structure of the dimethylquinolizinium salt (7). azonia[6]helicene hexafluorophosphate (1) in 35% yield, whose spectral data are identical with the authentic sample [6].

The Knoevenagel condensation [10] of 2,8-dimethylquinolizinium hexafluorophosphate (7) with benzaldehyde in the presence of piperidine gave 2,8-distyrylquinolizinium hexafluorophosphate (8) in 82% yield. Similarly 2,8-bis[2-(2-thienyl)vinyl]quinolizinium hexafluorophosphate (9) and 2,8-bis[2-(3-thienyl)vinyl]quinolizinium hexafluorophosphate (10) were obtained in 98% and 98% yields upon treatment of 7 with the corresponding thiophenecarboxaldehydes, respectively (Scheme 3). Irradiation of **9** in acetonitrile solution containing iodine gave a double cyclized product in 43% yield. Structural confirmation of the photo-product was established by spectral data and elemental analysis. The fab-ms spectrum of the product (m/z 342) showed a loss of four hydrogen atoms from **9** (m/z 346). The ¹H nmr spectrum of the photo-product exhibits three sets of doublets, indicating C_2 symmetrical structure. Two doublets with relatively small ³J_{HH} (5.6 Hz) at δ 6.67 and 7.76 ppm correspond to

An acetonitrile solution of 8 was irradiated with a highpressure mercury lamp through a Pyrex-filter in the presence of iodine as an oxidant [13] to yield 8aa typical thiophenic α,β -coupling constant. The former resonance is assigned as H1/H14 on the basis of its H-H COSY spectrum, which showed a characteristic long-

range coupling $({}^{5}J_{HH})$ between H1/H14 and H4/H11. Those data support that the photo-product is 7a-azonia-3,12-dithia[6]helicene hexafluorophosphate (2).

Photocyclization of 10 provided 7a-azonia-1,14dithia[6]helicene hexafluorophosphate (3) in 35% yield as the only one of the ten possible isomers by ring closure between the 2-position of the 3-substituted thiophene rings and the 1/9-positions of the quinolizinium unit. The similar regio-selective cyclization was already reported in the photolysis of the precursors of azoniadithia[5]helicenes [9]. The spectral assignment of **3** was achieved in a similar way to that of **2**. The 1 H nmr spectrum of the product showed six doublets, of which two doublets have coupling constants similar to the thiophene moiety of 2. These results strongly support that the photo-product is 3, because the ¹H nmr spectra of the isomers will show two singlets corresponding to two α -protons of thiophene moiety or 1,4-protons of quinolizinium ring. Due to the absence of the long-range coupling in the COSY spectrum of 3, assignment of the protons of the terminal thiophene moieties was rather ambiguous. In the NOE experiment, however, a correlation was observed between H(4)/H(11)and one of the protons of thiophene moiety appeared at 7.75 ppm, thus this signal was assigned to the protons at the 3,12-positions and the other (7.87 ppm) to H(2)/H(13)protons, respectively.

All ¹³C nmr assignments of **1**, **2**, and **3** were performed on the basis of hetero-nuclear two-dimensional (C-H COSY) nmr techniques [14].

In conclusion, we have synthesized two novel hetero-[6]helicenes containing both of quinolizinium and thiophene rings in a new short-step method. The complete assignments of the ¹H and ¹³C spectra of the hetero[6]helicenes **1-3** have been accomplished by concerted usage of H-H COSY, C-H COSY, and NOE nmr techniques. Further studies on the synthesis of higher fused heterohelicenes are now under way.

EXPERIMENTAL

General.

All melting points were determined on a Yamato melting point apparatus MP-21, and are uncorrected. The ¹H and ¹³C nmr spectra were obtained using a JEOL JNM-EX270 (270 MHz and 67.5 MHz) spectrometer, respectively. Chemical shifts are reported in ppm based on the resonance of DMSO-d₆ as 2.50 ppm for ¹H nmr and as 39.5 ppm for ¹³C nmr, respectively. The uv and visible spectra were obtained with a JASCO V-550 spectrophotometer. The fast-atom bombardment mass spectra were recorded with a JEOL LX1000 spectrometer with *m*-nitrobenzyl alcohol as a matrix. Microanalyses were performed on a Perkin-Elmer 2400 CHN Elemental Analyzer.

3-Hydroxy-3-methyl-4-[4-(2-methylpyridyl)]butanal Dimethyl Acetal (**6a**).

2-Methyl-4-pyridylmethyl lithium (4a) was prepared from phenyl lithium (1.90 g; 22.7 mmoles (22.0 ml of 1.0 mol/l cyclohexane-ether solution)), 2,4-lutidine (2.32 g; 21.6 moles), and absolute THF (10 ml). A solution of 4,4-dimethoxybutan-2-one (5) (2.99 g; 22.6 moles) in dry THF (3 ml) was added dropwise with stirring to the lithium solution at 0 °C. The reaction mixture was then stirred at r.t. for 1 hr, and poured onto a mixture of ice and water (50 g). The organic phase was separated, the aqueous layer extracted with Et₂O (2 x 100 ml) and the combined organic extracts dried with magnesium sulfate, and concentrated in vacuo to give pale yellow oil: 3.26 g (63%). ¹H nmr (CDCl₃): δ 1.19 (s, 3H, CH₃), 1.74 and 1.83 (dd, 2H, J = 14.2 and 6.3 Hz, CH₂), 2.53 (s, 3H, Py-CH₃), 2.69 and 2.75 (d, J = 13.4 Hz, 2H, Py-CH₂), 3.34 (s, 3H, OCH₃), 3.37 (s, 3H, OCH₃), 4.69 (t, 1H, J = 6.3 Hz, $CH(OMe)_2$, 7.00 (d, 1H, J = 5.1 Hz, Py-5), 7.06 (s, 1H, Py-3), 8.38 (d, 1H, J = 5.1 Hz, Py-6); ${}^{13}C$ nmr (CDCl₃): δ 24.0, 27.1, 42.5, 48.1, 52.7, 53.2, 70.5, 102.4, 123.1, 125.5, 147.0, 148.2, 157.6; ms m/z 240 (M+H)+, 208 (M-OCH₃)+, 150 (M-(OCH₃)₂CHCH₂)⁺, 107 (M-(OCH₃)₂CHCH₂CCH₃OH)⁺. This product contained a small amount of 2,4-lutidine.

3-Hydroxy-3-methyl-4-[2-(4-methylpyridyl)]butanal Dimethyl Acetal (**6b**).

4-Methyl-2-pyridylmethyl lithium (4b) was prepared from phenyl lithium (1.90 g; 22.7 mmoles (22.0 ml of 1.0 mol/l cyclohexane-ether solution)), 2,4-lutidine (2.32 g; 21.6 mmoles), and absolute ether (18 ml). A solution of 4,4-dimethoxybutan-2-one (5) (2.99 g; 22.6 mmol) in dry ether (6 ml) was added dropwise with stirring to the lithium solution at 0 °C. The reaction mixture was then stirred at r.t. for 1 hr, and poured onto a mixture of ice and water (50 g). The organic phase was separated, the aqueous layer extracted with Et₂O (2 x 100 ml) and the combined organic extracts dried with magnesium sulfate, and concentrated in vacuo to result in red oil: 3.65 g (70%). ¹H nmr (CDCl₃): δ 1.20 (s, 3H, CH₃), 1.74 and 1.83 (dd, 2H, J = 14.3 and 5.2 Hz, CH₂), 2.33 (s, 3H, Py-CH₃), 2.86 and 2.96 (d, 2H, J = 14.3 Hz, Py-CH₂), 3.31 (s, 3H, OCH₃), 3.34 (s, 3H, OCH₃), 4.71 (t, 1H, J = 5.2 Hz, CH(OMe)₂), 6.92 (d, 1H, J = 4.8 Hz, Py-5), 6.99 (s, 1H, Py-3), 8.34 (d, 1H, J = 4.8 Hz, Py-6); ¹³C nmr (CDCl₃): δ 20.9, 27.5, 44.0, 47.7, 52.6, 52.7, 71.0, 102.4, 122.3, 125.5, 147.9, 148.7, 159.1; ms m/z 240 (M+H)+, 208 (M-OCH₃)+, 190 (M-OCH₃-H₂O)+, 158 (M-OCH₃-H₂O-CH₃OH)+, 150 (M-(OCH₃)₂CHCH₂)+, 107 (M-(OCH₃)₂CHCH₂CCH₃ OH)+. This compound contained a small amount of 2,4-lutidine but it was used for the next step without further purification.

2,8-Dimethylquinolizinium Hexafluorophosphate (7).

A solution of the hydroxy-acetal **6b** (4.0 g; 16.7 mmoles) in acetic anhydride (10 ml) and sulfuric acid (5 drops) was heated for 1 hr at 150 °C with occasional shaking. The reaction mixture was then cooled to r.t., then poured onto water (10 ml). Insoluble material was filtered off, then ammonium hexafluorophosphate (3.0 g; 18.7 mmoles) was added into the filtrate. Resulting precipitate was collected and purified by recrystallization from acetonitrile-ethanol; yield: 1.67 g (33%); colorless plates, mp 153–154°; ¹H nmr (DMSO-d₆): δ 2.63 (s, 6 H, 2-Me), 7.88 (dd, 2 H, J_{3,4} = 6.9 Hz, J_{1,3} = 2.0 Hz, 3-H), 8.20 (s, 2 H, 1-H), 9.12 (d, 2 H, J_{3,4} = 6.9 Hz, 4-H,); ¹³C nmr (DMSO-d₆): δ 21.1, 124.4, 124.7, 135.5, 141.9, 149.0; ms m/z 158 (M–PF₆)⁺.

Anal. Calcd for C₁₁H₁₂NPF₆: C, 43.58; H, 3.98; N, 4.62. Found: C, 43.56; H, 3.84; N, 4.49. General Procedure for the Preparation of the (E,E)-2,8-Bis(arylvinyl)quinolizinium Hexafluorophosphates (8-10).

To a refluxing acetonitrile solution (6 ml) of 2,8-dimethylquinolizinium hexafluorophosphate (7) (1.1 mmoles) and arylaldehyde (8.8 mmoles) was added piperidine (2.0 mmoles). The mixture was refluxed for 2 hours. After cooling of the mixture to room temp., diethyl ether (150 ml) was added. The resulting precipitate was filtered, washed with ether, and dried *in vacuo* to give (E,E)-2,8-bis(arylvinyl)quinolizinium hexafluorophosphate (**8-10**). Analytically pure sample was obtained by recrystallization from acetonitrile-ethanol.

(E,E)-2,8-Distyrylquinolizinium Hexafluorophosphate (8).

This compound was obtained as yellow needles (82%), mp 264-265° (dec.); ¹H nmr (DMSO-d₆): δ 7.44 (t, J = 7.3 Hz, 2H, phenyl-4), 7.50 (dd, J = 6.9 and 7.3 Hz, 4H, phenyl-3,5), 7.57 (d, J = 16.5 Hz, 2H, CH=CH), 7.77 (d, J = 6.9 Hz, 4H, phenyl-2,6), 7.91 (d, J = 16.5 Hz, 2H, CH=CH), 8.31 (d, J = 7.1 Hz, 2H, 3,7-H), 8.39 (s, 2H, 1,9-H), 9.14 (d, J = 7.1 Hz, 2H, 4,6-H); ms: m/z 334 (M–PF₆)⁺.

Anal. Calcd. for C₂₅H₂₀NPF₆: C, 62.64; H, 4.21; N, 2.92. Found: C, 62.88; H, 4.03; N, 2.89.

(*E*,*E*)-2,8-Bis[2-(2-thienyl)vinyl]quinolizinium Hexafluoro-phosphate (**9**).

This compound was obtained as yellow needles (98%), mp 239-240° (dec.); ¹H nmr (DMSO-d₆): δ 7.76 (dd, J = 3.3 and 5.0 Hz, 2H, thienyl-5), 7.25 (d, J = 16.2 Hz, 2H, CH=CH), 7.50 (d, J = 3.3 Hz, 2H, thienyl-3), 7.76 (d, J = 5.0 Hz, 2H, thienyl-5), 8.10 (d, J = 16.2 Hz, 2H, CH=CH), 8.24 (d, J = 7.3 Hz, 2H, 3.7-H), 8.30 (s, 2H, 1,9-H), 9.06 (d, J = 7.3 Hz, 2H, 4,6-H); ms: m/z 346 (M–PF₆)⁺.

Anal. Calcd. for $C_{21}H_{16}NS_2PF_6$: C, 51.32; H, 3.28; N, 2.85. Found: C, 51.13; H, 3.09; N, 2.91.

(*E*,*E*)-2,8-Bis[2-(3-thienyl)vinyl]quinolizinium Hexafluoro-phosphate (**10**).

This compound was obtained as yellow needles (98%), mp 236-237° (dec.); ¹H nmr (DMSO-d₆): δ 7.38 (d, J = 16.2 Hz, 2H, CH=CH), 7.63 (d, J = 5.1 Hz, 2H, thienyl-4), 7.71 (dd, J = 2.8 and 5.1 Hz, 2H, thienyl-5), 7.91 (d, J = 2.8 Hz, 2H, thienyl-2), 7.91 (d, J = 16.2 Hz, 2H, CH=CH), 8.22 (d, J = 7.3 Hz, 2H, 3.7-H), 8.30 (s, 2H, 1,9-H), 9.09 (d, J = 7.3 Hz, 2H, 4.6-H); ms: m/z 346 (M–PF₆)⁺.

Anal. Calcd. for $C_{21}H_{16}NS_2PF_6$: C, 51.32; H, 3.28; N, 2.85. Found: C, 51.21; H, 3.42; N, 2.95.

General Procedure for Photocyclization of 8-10.

An acetonitrile solution (1000 ml) of **8-10** (0.2 mmoles) and iodine (0.2 mmoles) in a Pyrex vessel was irradiated for 10-17 hours with a 450W high-pressure mercury lamp at room temperature. The reaction was monitored by uv and visible spectra. When the spectra of the Z,Z form of **8-10** had disappeared, irradiation was stopped and the solution was concentrated under reduced pressure The residue was recrystallized from acetonitrile-ethanol.

8a-Azonia[6]helicene Hexafluorophosphate (1).

This compound was obtained as yellow micro needles after 10 hours irradiation, yield 35% from **8**, mp 302-303° (dec.); ¹H nmr (DMSO-d₆): δ 6.90 (dd, J = 6.9 and 8.6 Hz, 2H, H-2 and H-15),

7.25 (d, J = 8.6 Hz, 2H, H-1 and H-16), 7.52 (dd, J = 6.9 and 7.9 Hz, 2H, H-3 and H-14), 8.14 (d, J = 7.9 Hz, 2H, H-4 and H-13), 8.31 (d, J = 8.6 Hz, 2H, H-6 and H-11), 8.62 (d, J = 8.6 Hz, 2H, H-5 and H-12), 8.66 (d, J = 6.6 Hz, 2H, H-7 and H-10), 9.40 (d, J = 6.6 Hz, 2H, H-8 and H-9); 13 C nmr (DMSO-d₆): δ 122.3 (C-7 and C-10), 123.4 (C-16b and C-16d), 123.7 (C-6 and C-11), 125.6 (C-1 and C-16), 127.1 (C-2 and C-15), 127.9 (C-16a and C-16e), 128.5 (C-3 and C-14), 128.8 (C-4 and C-13), 132.5 (C-4a and C-12a), 133.2 (C-8 and C-9), 135.2 (C-6a and C-10a), 136.6 (C-5 and C-12), 140.1 (C16c); ms: m/z 330 (M-PF₆)⁺.

Anal. Calcd. for C₂₅H₁₆NPF₆: C, 63.17; H, 3.39; N, 2.95. Found: C, 63.21; H, 3.42; N, 2.82.

7a-Azonia-3,12-dithia[6]helicene Hexafluorophosphate (2).

This compound was obtained as yellow micro needles after 17 hours irradiation, yield 43% from **9**, mp 225-226° (dec.); ¹H nmr (DMSO-d₆): δ 6.67 (dd, J = 1.0 and 5.6 Hz, 2H, H-1 and H-14), 7.76 (d, J = 5.6 Hz, 2H, H-2 and H-13), 8.34 (d, J = 8.6 Hz, 2H, H-5 and H-10), 8.68 (d, J = 6.1 Hz, 2H, H-6 and H-9), 8.91 (dd, J = 1.0 and 8.6 Hz, 2H, H-4 and H-11), 9.23 (d, J = 6.1 Hz, 2H, H-7 and H-8); ¹³C nmr (DMSO-d₆): δ 121.1 (C14b and C14d), 122.2 (C-5 and C-10), 122.6 (C-6 and C-9), 124.2 (C-1 and C-14), 130.2 (C-2 and C-13), 130.4 (C-4 and C-11), 131.0 (C-7 and C-8), 133.5 (C-5a and C-9a), 135.5 (C-14a and C-14e), 141.0 (C-3a and C-11a), 141.1 (C-14c); ms: m/z 342 (M-PF₆)⁺.

Anal. Calcd. for C₂₁H₁₂NS₂PF₆: C, 51.75; H, 2.48; N, 2.87. Found: C, 51.71; H, 2.12; N, 3.07.

7a-Azonia-1,14-dithia[6]helicene Hexafluorophosphate (3).

This compound was obtained as yellow micro needles after 10 hours irradiation, yield 35% from **10**, mp 270-271° (dec.); ¹H nmr (DMSO-d₆): δ 7.75 (d, J = 5.4 Hz, 2H, H-3 and H-12), 7.87 (d, J = 5.4 Hz, 2H, H-2 and H-13), 8.41 (d, J = 8.6 Hz, 2H, H-5 and H-10), 8.72 (d, J = 6.6 Hz, 2H, H-6 and H-9), 8.74 (d, J = 8.6 Hz, 2H, H-4 and H-11), 9.26 (d, J = 6.6 Hz, 2H, H-7 and H-8); ¹³C nmr (DMSO-d₆): δ 120.4 (C-14b and C-14d), 123.0 (C-6 and C-9), 123.6 (C-5 and C-10), 124.2 (C-3 and C-12), 129.9 (C-2 and C-13), 130.8 (C-7 and C-8), 131.4 (C-4 and C-111), 133.5 (C-5a and C-9a), 137.5 (C-14a and C-14e), 139.1 (C-14c), 141.9 (C-3a and C-11a); ms: m/z 342 (M-PF₆)⁺.

Anal. Calcd. for $C_{21}H_{12}NS_2PF_6$: C, 51.75; H, 2.48; N, 2.87. Found: C, 51.93; H, 2.32; N, 2.86.

Acknowledgment.

This work was supported by Japan Society for the Promotion of Science (JSPS) under grant No.14740352 and Seki Memorial Foundation for Science.

REFERENCES AND NOTES

[1] Recent reviews of helicene see: [a] W. H. Laarhoven and W. J. C. Prinsen, *Top. Curr. Chem.*, **125**, 65 (1984); [b] K. P. Meurer, and F. Vögtle, *Top. Curr. Chem.*, **127**, 1 (1985); [c] H. Osuga and H. Suzuki, *Yuki Gosei Kagaku Kyokaishi*, **52**, 1020 (1994); [d] S. Grimme, J. Harren, A. Sobanski, and F. Vögtle, *Eur. J. Org. Chem.*, 1491 (1998); [e] K. Sato and S. Arai, Heterohelicenes Containing Nitrogen Aromatics: Azahelicenes and Azoniahelicenes, in 'Cyclophane Chemistry for the 21st Century' (Ed. by H. Takemura), Chapter 8, Research Signpost (2002); [f] H. Osuga and K. Tanaka, *Yuki Gosei Kagaku Kyokaishi*, **60**, 593 (2002); [g] A. Urbano, *Angew. Chem. Int. Ed.*, **42**, 3986 (2003).

[2] Aggregation of helicene see: [a] T. J. Katz, Angew. Chem. Int. Ed., **39**, 1921 (2000); A. E. Rowan and R. J. M. Nolte, Angew. Chem. Int. Ed., 37, 63 (1998) and references therein; [b] L. Vyklicky, S. H. Eichhorn, and T. J. Katz, Chem. Mater., 15, 3594 (2003); K. E. S. Phillips, T. J. Katz, S. Jockusch, A. J. Lovinger, and N. J. Turro, J. Am. Chem. Soc., 123, 11899 (2001); [c] T. Verbiest, S. V. Elshocht, A. Persoons, C. Nuckolls, K. E. Phillips, and T. J. Katz, Langmuir, 17, 4685 (2001); T. Verbiest, S. V. Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. J. Katz, and A. Persoons, Science, 282, 914 (1998).

[3] Heterohelicenes containing thiophene rings, see [a] T. Caronna, M. Catellani, S. Luzzati, L. Malpezzi, S. V. Meille, A. Mele, C. Richter, and R. Sinisi, *Chem. Mater.*, **13**, 3906 (2001); [b] H. Wynberg, *Acc. Chem. Res.*, **4**, 65 (1971); J. H. Dopper, D. Oudman, and H. Wynberg *J. Am. Chem. Soc.*, **95**, 3692 (1973); [c] J. Larsen and K. Bechgaard, *Acta Chim. Scand*, **50**, 71 and 77 (1996); [d] H. Nakagawa, J. Yoshino, K. Yamada, and M. Shiro, *Chem. Lett.*, **32**, 90 (2003); [e] K. Tanaka, H. Osuga, and Y. Kitahara, *J. Org. Chem.*, **67**, 1795 (2002); [f] A. Rajca, H. Wang, M. Pink, and S. Rajca, *Angew. Chem. Int. Ed.*, **39**, 4481 (2000).

[4] Heterohelicenes containing other heterocycles, see [a] J. Eskildsen, F. C. Krebs, A. Faldt, P. Sommer-Larsen, and K. Bechgaard, J. Org. Chem., 66, 200 (2001); [b] I. Pischel, S. Grimme, S. Kotila, M. Nieger, and F. Vögtle, Tetrahedron Asymmetry, 7, 109 (1996); [c] H. A. Staab, M. A. Zirnstein, and C. Krieger, Angew. Chem. Int. Ed., 28, 86 (1989); [d] T. Caronna, S. Gabbiadini, A. Mele and F. Recupero, Helv. Chim. Acta, 85, 1 (2002); [e] D. E. Pereira, Neelima, and N. J. Leonard, Tetrahedron, 46, 5895 (1990); [f] E. Murguly, R. McDonald, and N. R. Branda, Org. Lett., 2, 3169 (2000); [g] J. E. Field, T. J. Hill, and D. Venkataraman, J. Org. Chem., 68, 6071 (2003); [h] C. Herse, D. Bas, F. C. Krebs, T. Bürgi, J. Weber, T. Wesolowski, B. W. Laursen, and J. Lacour, Angew. Chem. Int. Ed., 42, 3162 (2003).

[5] Synthesis of azoniahelicenes, see [a] S. Arai, T. Yafune, M. Okubo, and M. Hida, *Tetrahedron Lett.*, **30**, 7217 (1989); [b] S. Arai, M. Ishikura, K. Sato, and T. Yamagishi, *J. Heterocyclic Chem.*, **32**, 1081 (1995); [c] K. Sato, K. Nakajima, S. Arai, and T. Yamagishi, *Liebigs Ann.*, **1996**, 439; [d] S. Arai, M. Ishikura, and T. Yamagishi, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 1561.

[6] K. Sato, S. Arai, T. Yamagishi, and T. Tanase, *Acta Crystallographica Section C*, **C59**, 0162 (2003)

[7] Heterohelicenes comprising of pyridine and thiophene rings, see [a] R. N. Castle, S. Pakray, and G. E. Martin, *J. Heterocyclic Chem.*, **28**, 1997 (1991). [b] L. W. Castle, M. D. Johnston, Jr., C. L. Camoutsis,

and R. N. Castle, J. Heterocyclic Chem., **29**, 1805 (1992); [c] C. Camoutsis and R. N. Castle, J. Heterocyclic Chem., **30**, 153 (1993); [d] A. P. Halverson, L. W. Castle, and R. N. Castle, J. Heterocyclic Chem., **33**, 179 (1996); [e] M. J. Musmar and R. N. Castle, J. Heterocyclic Chem., **31**, 553 (1994); [f] M. J. Musmar, A. S. Zektzer, R. N. Castle, and N. K. Dalley, J. Heterocyclic Chem., **30**, 487 (1993); [g] J.-K. Luo, A. S. Zektzer, and R. N. Castle, J. Heterocyclic Chem., **38**, 187 (1994); [i] J.-K. Luo, R. F. Federspiel, and R. N. Castle, J. Heterocyclic Chem., **35**, 1441 (1998); [i] J.-K. Luo, R. F. Federspiel, and R. N. Castle, J. Heterocyclic Chem., **36**, 185 (1996); [j] J.-K. Luo, R. F. Federspiel, and R. N. Castle, J. Heterocyclic Chem., **37**, 1991); [h] J.-K. Luo, R. F. Federspiel, and R. N. Castle, J. Heterocyclic Chem., **36**, 185 (1996); [j] J.-K. Luo, R. F. Federspiel, and R. N. Castle, J. Heterocyclic Chem., **37**, 1991); [h] J.-K. Luo, R. F. Federspiel, and R. N. Castle, J. Heterocyclic Chem., **36**, 185 (1996); [j] J.-K. Luo, R. F. Federspiel, and R. N. Castle, J. Heterocyclic Chem., **36**, 185 (1996); [j] J.-K. Luo, R. F. Federspiel, and R. N. Castle, J. Heterocyclic Chem., **37**, 1997).

[8] Heterohelicene comprising of pyridine and thiophene rings, see also K. Tanaka, Y. Kitahara, H. Suzuki, H. Osuga, and Y. Kawai, *Tetrahedron Lett.*, **37**, 5925 (1996).

[9] K. Sato, T. Yamagishi, and S. Arai, *J. Heterocyclic Chem.*, **37**, 1009 (2000).

[10] K. Sato, K. Kano, T. Yafune, M. Hida, S. Arai, and T. Yamagishi, *Heterocycles*, **37**, 955 (1994).

[11] Synthesis of 2-methylquinolizinium cation [a] A. Righards and T. S. Stevens, J. Chem. Soc., 3067 (1958); [b] E. E. Glover and G. Jones, J. Chem. Soc., 3021 (1958); [c] H. V. Hansen and E. D. Amstutz, J. Org. Chem., 28, 393 (1963).

[12] Selective metallation of 2,4-lutidine [a] E. M. Kaiser, G. J. Bartling, W. R. Thomas, S. B. Nichols, and D. R. Nash, J. Org. Chem., 38, 71 (1973), and references cited therein; [b] A. D. Cale, Jr., R. W. McGinnis, Jr., P. C. Teague, J. Org. Chem., 25, 1507 (1960); [c] K. Takahashi, K. Konishi, M. Ushio, M. Takaki, and R. Asami, J. Organometal. Chem., 50, 1 (1973); [d] D. A. Evans, V. J. Cee, T. E. Smith, and K. J. Santiago, Org. Lett., 1, 87 (1999); [e] J. A. Ragan, B. P. Jones, C. N. Meltz, and J. J. Teixeira Jr., Synthesis, 2002, 483.

[13] Synthesis of azonia aromatics by photocyclization [a] S. Arai,
H. Yoda, K. Sato, and T. Yamagishi, J. Heterocyclic Chem., 39, 425
(2002); [b] K. Sato, S. Arai, and T. Yamagishi, J. Heterocyclic Chem., 33, 57 (1996); [c] S. Arai, K. Tabuchi, H. Arai, and M. Hida, Chem. Lett., 1991, 1355; [d] S. Arai, N. Nakamura, H. Yamaguchi, M. Okazaki, and
M. Hida, Bull. Chem. Soc. Jpn., 64, 1996 (1991); [e] S. Arai, T. Takeuchi,
M. Ishikawa, T. Takeuchi, M. Yamazaki, and M. Hida, J. Chem. Soc., Perkin Trans. 1, 1987, 481.

[14] M. D. Johnston, Jr., M. Salazar, D. K. Kruger, R. N. Castle, and G. E. Martin, *Magn. Reson. Chem.*, 26, 839 (1988).